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Abstract:  Consistent with the ultimate goals of AGI, we can expect that deductive consequences of large and 
grammatically varied text bases would not be generated by sequential application of inference rules but would 
instead be recognized in a single massively parallel pattern matching operation on their semantic structures 
which executes near instantaneously. We describe an approach to realizing such a capability in graphical 
terms whereby semantic structures are depicted as certain graphical arrays, and deductive relationships are 
determined by requisite pattern connections within and among those arrays.  
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1. Realizing Natural Language Deduction Machines  
 
 1.1 Natural Language Deduction Machines 
 
One goal of AGI is to realize natural language deduction machines, by which I mean machines that can 
near instantaneously identify deductive consequences of general text like newspapers, regardless of the 
number or grammatical complexity of the sentences involved, and do so without the assistance of a 
human. The difficulties that lie in the path to realizing such machines seem insuperable and the prospect 
of realizing them to any degree of generality has been virtually abandoned. Yet such machines appear 
central to the realization of the wider AGI goals involving machine intelligence and reasoning in the 
handling of natural language1.  
 
1.2. Two Problems in Realizing Natural Language Deduction Machines  
 
Broadly speaking, there are two problems that need to be solved in order to realize such machines. One is 
the massively parallel deduction problem, which is the problem of defining sentence representations and 
massively parallel deductive operations to operate on them applicable to texts of arbitrary size and 
grammatical complexity.  The second problem is the conversion problem, which is the problem of 
formulating procedures for on-line inter-conversion between sentences and their representations.  
 
1.3. Scope of Paper 
 
In this paper, I suggest an approach to the massively parallel deduction problem which defines sentence 
representations as certain graphical arrays, and treats deduction as a massively parallel and 
simultaneously executed pattern matching operation which executes on them, thereby supplanting 
sequential forms of deductive inferencing [1] [2] [3] [4]. We refer to this proposed operation as 
immediate deductive recognition (IDR). The conversion problem is not treated here inasmuch as it 
involves complex pragmatic and grammatical issues that are beyond the scope of this paper. Some of 
these issues are addressed in an unpublished paper by the author entitled “A Theory of Readings [5].” 2 
 
1.4. Immediate Deductive Recognition (IDR) 
 
While the theory underlying IDR is essentially that of model theoretic semantics, we describe IDR 
wholly in graphical terms which much more clearly exhibit the kinds of patterns that are to be matched 
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[6] [7] [8] [9] [10]. Accordingly, we define a local graph of a sentence (or of a set of sentences) as a 
linked array of node-and-arc graphs which collectively graphically depict the denotation of a sentence (or 
of a set of sentences) relative to a given “permissible” (model theoretic) interpretation which validates it, 
that is, an interpretation under which that sentence (every sentence in the set) is true. Permissible 
interpretations are interpretations restricted in certain ways to render local graphs finite and comparable 
(see section 6.1). And we define the global graph of a sentence (or set of sentences) as a linked array of 
its local graphs relative to all its permissible validating interpretations. IDR executes as a single-step 
massively parallel operation which simultaneously compares every local graph of a given set of sentences 
against every local graph of a given sentence and, simultaneously, against every local graph of its 
negation.3 If every local graph of the given set of sentences is compatible with some local graph of the 
given sentence, or if every local graph of the given set of sentences is incompatible with every local 
graph of the negation of that given sentence, the given sentence is thereby determined to be a deductive 
consequence of that given set of sentences. When this determination is made by machine we will refer to 
the operation which makes it as machine IDR. Compatibility (incompatibility) of a local graph of a set of 
sentences with a local graph of a given sentence is defined in graphical terms and corresponds to the 
model theoretic circumstance that there exists (does not exist) a permissible interpretation which 
validates both the set of sentences and the given sentence and which is such that the local graphs in 
question respectively depict their denotations relative to that interpretation.  
 
1.5. Human IDR.  
 
The motivation for our approach to machine IDR derives from an apparent human capability, variously 
noted in the literature3, to carry out near-instantaneous deduction (NID) on natural language sentences, 
particularly when they involve small numbers of simple sentences, and to do so without apparent 
intervening conscious thought or calculation. We hypothesize that the cognitive mechanism underlying 
NID may be a form of pattern matching.4 Accordingly, we will refer to the operation of this hypothesized 
pattern matching mechanism in humans as human IDR.  

 
1.6. Hypothesized Underlying Cognitive Mechanism of Human IDR5. 
 
The underlying mechanism of human IDR may be akin to an individual’s near-instantaneously 
recognizing the face of a friend from a photograph by matching (remembered) selected structural 
characteristics of the face of the friend (such as the set of the eyes or shape of the nose) against those 
observed in the photograph. That is, an individual’s near-instantaneously recognizing simple deductive 
consequences of given sentences may be carried out by matching selected structural characteristics of the 
given sentences against selected structural characteristics of those deductive consequence. We will argue 
below that these structural characteristics may be intuitively perceived patterns of semantic connections 
among the underlying logical morphemes of those sentences. 
 
1.7. Common Examples of NID   
 
Examples of near instantaneous deduction (NID) appear quite common, and would include cases such as 
near instantaneously comprehending - without specific practice or familiarization with the specific 
sentences involved – that the sentences “John loves Mary” and “Mary is loved by John” necessarily 
follow from each other, and that the sentence "John is dating a waitress" necessarily follows from the 
sentence, "John is dating many waitresses," as well as from the pair of sentences, "John is dating Mary" 
and "Mary is a waitress." Instances of NID, while common, appear to be limited for most individuals to 
small sets of simple sentences, such as the sentences in these examples. This is not to say that humans 
could not make deductive determinations on larger sets of sentences and of greater complexity, but only 
that they would not be able (in most cases) to do so without conscious thought and calculation, and 
certainly could not do so near instantaneously. Near instantaneous deductions of these simple kinds have 
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been widely noted by other researchers, under various names, such as “immediate inference.”[11] The 
difference between the usual treatment of NID and the account given here is that we hypothesize that the 
underlying mechanism of NID is a form of massively parallel pattern recognition which we refer to as 
human IDR5. The question is how would such a mechanism work? We examine this next. 
 
2.  How is Human IDR Possible? 
 
2.1. The Logic of the Language May Be "Hardwired" in the Brain  
 
Human IDR may have its roots in some sort of neural representation of what might be called "the logic of 
the language," that is, in structures within the brain that represent the semantic structures of logical 
morphemes and their interconnections which determine deductive relationships[10]. We would regard 
these structures as specific to certain languages or language groups and hypothesize that an individual’s 
understanding of their logical function develops in the course of his or her "learning” a particular 
language. The logical morphemes in the above (English) examples would be those expressed there by the 
word-strings (i.e., morphs), "many," "is," (in the sense of both predication and identity), "es," "ing," "ed," 
"a," "and," and "by." (Logical morphemes are to be distinguished from so-called non-logical or “lexical” 
morphemes such as those expressed in the above examples by the word-strings, "John," "Mary," and 
"waitress.") The fact that human IDR is apparently limited to simple sentences may be due to inherent 
ambiguities in complex sentences deriving from multiple possible functional roles for the logical 
morphemes occurring in them which obscure their deductive consequences. Simple sentences tend to be 
less ambiguous in this regard. And the fact that human IDR is apparently limited to small sets of premise 
sentences may be due to neuro-physiological limits in representing the myriad interconnections among 
logical morphemes occurring in large numbers of sentences. Machines would, of course, suffer no such 
limitations.  
 
2.2. Memory: In the Brain and Machines 
 
I use the term “memory” in the sense of language-based (or declarative) memory, and intend it to apply 
equally to the brain and machines. By language-based memory I mean the store of information held in the 
brain or in a machine which has, by one means or other, been "entered into it" in the form of sentences. In 
the case of the brain, these would be sentences which one has either read or heard. In the case of 
machines, these would be sentences entered into machine memory by any of the customary sentence-
input means for machines. 
 
2.3. A Massive Parallelism Assumption Underlying Human IDR  
 
It seems reasonable to assume that the brain executes IDR by a massively parallel mechanism of some 
kind that is, by a mechanism which executes all subtasks involved in carrying out IDR in parallel and, 
moreover, executes them globally and simultaneously across the whole of memory. Some version of this 
assumption is widely shared by neuroscientists and others as necessary to explain how the brain 
accomplishes certain reasoning tasks so rapidly [1] [2] [3] [10].  
 
2.4. How Memory Is Represented Is Key 
 
The way that sentences are represented in memory wholly conditions the manner in which and the extent 
to which their deductive consequences can be accessed by massively parallel means. In order to facilitate 
human IDR, therefore, memory would need to be represented in the brain in such a way that the structure 
of its deductive consequences is reflected in its own structure to a degree sufficient to permit the 
massively parallel recognition of at least the simpler of those deductive consequences. And this requires, 
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in turn, that the structure of memory be "global" in the sense that all connections among the components 
of memory relevant to deduction be included in its representation. These requirements strongly suggest 
that that representation should be "semantic" rather than "syntactic," that is, that it should represent the 
semantic structures of sentences rather than their syntactic forms: first, because semantic structures are 
better preserved under deduction than are syntactic forms; and second, because connections among 
memory components relevant to deduction are better depicted as semantic structures than as syntactic 
forms. When memory is represented syntactically, its deductive consequences cannot be directly 
recognized from that representation, but can only be generated from it and into forms which look very 
different from those they were derived from. On the other hand, semantic structures of memory can be 
defined in such a way that their structure is preserved under deductive inference. We next inquire into the 
kind of structures of memory would expedite human IDR. 
 
3.  Back to the Brain: The Wiring Hypothesis5 
 
3.1. Is The Brain "Wired" For IDR? 
 
The apparent capability in humans to carry out deductions on simple sentences near instantaneously and 
which appears to require no conscious thought or calculation when doing so suggests that the brain may 
be "wired" for it. Let us suppose that there are neural configurations in the brain that physically encode 
sentence information as memory. We can refer to these configurations as "sentence representations" 
(ignoring for the moment whether these representations are more appropriately of sentence forms or of 
sentence meanings). By the hypothesis that the brain is "wired" for IDR I mean that there may exist 
pathways in the brain inter-linking stored sentence representations in such a way as to facilitate the 
immediate recognition of their collective deductive consequences. These pathways, i.e., "wiring", may 
develop (through an evolutionarily conditioned disposition to do so) in the course of learning a language. 
Their development may consist in growing new pathways or in reinforcing the capacity of existing 
pathways to transmit signals, and would progress as the language and the inferences framed in it are 
practiced. One might regard this hypothesized process as a physical encoding of the "logic of the 
language" within the brain. 
 
3.2. How Might The Brain Be Wired For IDR? A Proposal 
 
Assuming that the brain is "wired for IDR" in the above sense, what sort of wiring design would be most 
efficient for its execution?  Putting the question teleologically, what would be the most efficient wiring 
design for the brain to have evolved in order to maximally facilitate the immediate recognition of simple 
deductive consequences from memory? ("Efficiency", for the brain - as for machines - means compact 
storage and rapid execution.) To give this question a more determinate form: Let us suppose that a given 
set X of simple sentences is represented in memory as a pattern X* of electro-chemical signals, and that 
some possible (simple) deductive consequence Y of X (being considered) has its negation not-Y 
represented in memory also as a pattern, say [not-Y]*, of electro-chemical signals. Let us suppose further 
that the brain would seek to determine whether [not-Y*] is inconsistent with X* in the most efficient way 
possible. Our question then becomes: How might the structures of X* and [not-Y]* be related in order to 
provide the most efficient mechanism for determining that these structures were incompatible, and hence 
that Y was a deductive consequence of X?  We note that it would not be efficient to have X* sequentially 
generate patterns in search of some that were inconsistent with [not-Y*], that is, by sequentially 
generating a contradiction from X* and [not-Y]*, for such a "generation procedure" would appear to take 
much more time than the brain apparently devotes to extract deductive inferences "essentially 
instantaneously." The most efficient mechanism would thus appear to be one which required no more 
storage than that already devoted to memory - to represent X* - and required now to represent [not-Y*] 
as well.  
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3.3. A "Most Efficient" Mechanism Would Be Semantic 
  
The requirement that a deductive recognition mechanism be efficient entails that no additional structures 
be introduced than those already constituting memory and, therefore, that the deductive consequences of 
memory must already be present and accessible within the structure of memory. We had earlier stated 
(Section 2.4) that a semantic representation of memory for IDR would tend to be superior to syntactic 
representations in this regard. However, not all proposed semantic memory structures are equal in this 
regard: some tend to exhibit their deductive consequences to a greater degree than others. In the 
following sections we will describe a notion of semantic structure for memory that is specifically 
designed to be maximally preserved under deductive inference.  
 
4. Back to Machines  
 
4.1. Analogue of Machine IDR in Elementary Algebra 
 
4.1.1. Properties of Algebraic Graphs 
 
Machine IDR for natural language generalizes three familiar properties of elementary classroom algebra 
of the plane. The first property of algebraic graphs is that individual solutions of equations, inequalities, 
and systems of equations and inequalities can be graphically depicted as points on the plane, which are 
said to “correspond to” those solutions, and their solution sets can be graphically depicted as 
corresponding figures, i.e., as “graphs” on the plane (in the usual sense). The second property of 
algebraic graphs is that a given equation or inequality is a deductive consequence of a given system of 
equations and inequalities if and only if every point graphically depicting a solution of the system is 
either identical with some point graphically depicting a solution of the given equation or inequality or is 
distinct from every point graphically depicting a solution of the negation of that equation or inequality. 
The third property of algebraic graphs is that the determination of whether given points on the plane are 
distinct or identical can be approximated by a massively parallel comparison operation simultaneously 
executed on their pixel approximations (i.e., on the pixels containing/enclosing them) that assesses those 
pixels as distinct or identical, and to thereby make a correspondingly approximate determination that the 
given equation or inequality is or is not a deductive consequence of the system4.   
 
4.1.2. Generalizing Algebraic Terminology to Natural Language 
 
In generalizing to machine IDR for natural language deduction we generalize “equation or inequality” to 
sentence; “system of equations and inequalities” to sets of sentences; “solution of an equation or 
inequality” to  “denotation relative to an interpretation under which that equation or inequality is true,” 
“solution of a system of equations and inequalities” to “denotation of a set of sentences relative to an 
interpretation under which all sentences of the set are true, “solution set” to “set of denotations,” “point 
corresponding to solution of”  to “local graph of,”  “graph corresponding to solution set of an equation, 
inequality, or system” to “global graph of that equation, inequality, or system”; and the relations of 
“identity” and “distinctness” among points to the relations of  “graphical compatibility” and “graphical 
incompatibility” among local graphs. 
 
 
 
4.1.3. Generalizing the Three Properties of Algebraic Graphs to Natural Language 
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The first property of algebraic graphs generalizes to natural language as follows: A denotation relative to 
an interpretation  under which a given sentence (or every sentence in a given set of sentences) is true can 
be graphically depicted as a local graph (which that interpretation is said to determine), and the set of all 
such denotations can be graphically depicted as a linked array of local graphs, called a global graph of 
that sentence or set of sentences. The second property of algebraic graphs generalizes to natural language 
as follows: a given sentence is a deductive consequence of a given set of sentences if and only if every 
local graph (i.e., point corresponding to some solution) of the set is either compatible with (i.e., is 
identical with) some local graph (i.e., point corresponding to some solution) of the given sentence or is 
incompatible with (i.e., is distinct from) every local graph (i.e., point corresponding to some solution) of 
its negation. (Model theoretically, compatibility of local graphs of two sentences or of two sets of 
sentences means that there is some single interpretation which determines both graphs, that is, that there 
is some single interpretation under which the sentences or all the sentences in the sets in question are 
true; and incompatibility means that there is no such single interpretation.) The third property of 
algebraic graphs generalizes to natural language as follows: the determination of whether every local 
graph of a given set of sentences is compatible with some local graph a given sentence or is incompatible 
with every local graph of its negation, can be made by a massively parallel comparison operation 
simultaneously executed on all local graphs of the set of sentences, all local graphs of the given sentence, 
and on all local graphs of its negation, to assess in each case whether or not they are compatible, and to 
thereby make a determination that the given sentence is or is not a deductive consequence of the given set 
of sentences6. These determinations are approximate in the sense that the constitution of local and global 
graphs is dependent on the range of permissible interpretations used in their definition, their accuracy 
increasing generally as larger sets of permissible interpretations are introduced. While the situation is 
more complex for natural language than for the much simpler language of elementary algebra, it is clear 
that the underlying idea is the same.  
 
5.  Key Syntactic Notions for Natural Language 
 
5.1. Relation-expressions. 
 
A relation-expression is a syntactic representation of a character string which, in a given occurrence, is 
regarded as denoting (relative to a given interpretation) an m-place relation which holds among given m-
tuples of elements of the universe of discourse.  
 
5.2. Thing- expressions 
 
A thing-expression is a syntactic representation of a character string which, in a given occurrence, is 
regarded as denoting a "thing" (relative to an interpretation), where a "thing" is a set of subsets of the 
universe of discourse.  
 
5.3. Modifier-expression 
 
A modifier-expression is a syntactic representation of a character string which, in a given occurrence, is 
regarded as denoting a function on the denotation of the expression to which it is applied, and which 
assigns to that denotation a "thing" or “relation” (relative to an interpretation), the structure of which is 
determined by the function denoted by that modifier. A thing or relation-expression to which a modifier 
is applied is said to be governed by that modifier, and what remains of that thing or relation expression 
when its governing modifiers have been removed is called the base of that thing or relation expression. 
Certain modifiers applied to thing expressions are syntactic representations of ordinary determiners such 
as “all,”, “some,” “many,” etc. Certain modifiers applied to relation expressions are syntactic 
representations of temporal operators. 
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5.4. Sentences 
 
A sentence is a syntactic representation of a character string which, in a given occurrence, is regarded as 
denoting an "event" or "state of affairs," and is composed of (i.e., is formalized as): (1) an m-place 
relation- expression rm, together with (2) m thing-expressions a1, …, am , each of which denotes a set of 
sets of elements of the domain of discourse, which elements stand in the relation denoted by rm. The m 
thing-expressions a1, …, am  remarked in (2) are referred to as the m major thing expressions of the 
sentence, and the sentence composed of an m-place relation-expression rm followed by  the m major thing 
expressions a1, …, am is schematically indicated as rm (a1, …, am). 
 
 
 
6.  Key Semantic Notions for Natural Language 
 
6.1. Interpretations  
 
An interpretation is a function which assigns a set to every meaningful expression, including individual 
sentences and sets of sentences, which are referred to as the local denotation of that expression relative to 
that interpretation. We restrict interpretations to permissible ones, that is, to interpretations that assign 
the same finite set to every thing expression and the same function to every modifier; so that the only 
way two permissible interpretations could differ would be in the structure of the relation they assign to 
the same relation expression. The reason for this restriction is to make semantic and graphical structures 
comparable and computationally coherent. An expression is a constant if all permissible interpretations 
assign the same denotation to that expression; otherwise that expression is said to be variable; 
accordingly, relation expressions are the only variable expressions.  
 
6.2. Set Theoretic Criterion for Deducibility 
 
Every sentence or set of sentences, relative to a given interpretation, has a translation into set theory 
which expresses – in set theoretic terms - the relationship which must hold among the local denotations 
of its component expressions – relative to that interpretation - in order for that sentence or all sentences in 
the set of sentences to be true under that interpretation. This translation into set theory is referred to as the 
truth condition of that sentence or set of sentences relative to that interpretation. The local denotation of a 
sentence (or set of sentences) relative to an interpretation f under which that sentence (every sentence in 
the set) is true is a set whose defining condition is the truth condition of that set (or set of sentences), that 
local denotation is then  said to be determined by that interpretation. The global denotation of a sentence 
(or set of sentences) is the set of its local denotations determined by all permissible interpretations under 
which it (every sentence in the set) is true. Local denotations of sentences (or of sets of sentences) are 
compatible if they are determined by  a single interpretation, and are incompatible if there is no single 
interpretation which determines them. A given sentence is a deductive consequence of a given set of 
sentences if it is true under every interpretation under which all sentences of the set are true [12]. This is 
equivalent to the following: A given sentence is a deductive consequence of a given set of sentences if 
every local denotation of the set relative to some interpretation under which its member sentences are 
true is incompatible with every local denotation of the negation of the given sentence relative to some 
interpretation under which it is true.  
 
6.3   Graphical Criterion for Deducibility 
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A local graph of a sentence or set of sentences relative to an interpretation under which it is true is a 
graphical entity which represents its local denotation relative to that interpretation in the sense that that 
graphical entity and the local denotation it represents are, in principle, inter-retrievable, and that the set 
theoretic relationships into which denotations enter are equivalently expressible as graphical relationships 
among the local graphs which represent them. (In the algebraic case, local denotations are solutions and 
local graphs that depict them are points on the plane.) The global graph of a sentence or set of sentences 
is a connected array of its local graphs, and depicts its global denotation. (In the algebraic case, global 
graphs are ordinary Cartesian graphs on the plane that depict solutions sets of equations, inequalities, and 
systems).   Two local graphs of sentences or of sets of sentences are compatible if they depict denotations 
that are compatible, and are incompatible if they depict denotations that are incompatible. We will 
shortly give a graphical characterization of the relation of compatibility among graphs of sentences or 
sets of sentences. (In the algebraic case, points are compatible if and only if they are identical.) A given 
sentence is a deductive consequence of a given set of sentences if every local graph of the given set of 
sentences is incompatible with every local graph of the negation3 of the given sentence. (In the algebraic 
case, the fact that compatibility of local denotations implies identity, whereas in the natural language case 
it does not, has several interesting consequences. One is that while in the algebraic case, the global graph 
of a system of equations and inequalities is the graphical intersection of the global graphs of its member 
equations and inequalities, this does not hold in the natural language case. A second consequence is that 
the following two statements (a) and (b) are equivalent in the algebraic case but in equivalent in the 
natural language case: (a) every local graph of the given system is incompatible with every local graph of 
the negation of a given equation or inequality; (b) every local graph of the system is also a local graph of 
the given equation or inequality.)  In order to avoid attaching any sort of labels to graphs to indicate the 
semantic interconnections among their components, we use special arcs to join graphical components 
which represent the same denotation relative to a given interpretation. Accordingly, we refer to graphs 
which are joined in this way as “linked graphs.” 
 
7.  Semantic Representation of Sentences 
 
7.1. Positive and Negative Relational Profiles 
 
If a is a thing-expression, let aB be the base of a. Let f be an interpretation, let rm(a1, …, am) be a sentence, 
and let CP(rm(a1, …, am)) be the Cartesian product f(a1

B) x… x f(am
 B). Finally, let f(rm)c be the 

complement of the relation f(rm). Then we define the positive relational profile of rm(a1, …, am) under f, 
which we write as POSf  (r

m(a1, …, am)), to be the  intersection of the set f(rm) with CP(rm(a1, …, am)), and 
we define the negative relational profile of rm(a1, …, am) under f, which we write as NEG f  (r

m(a1, …, 
am)), to be the intersection of the set f(rm)c with CP(rm(a1, …, am)). [Analogy with elementary algebra of 
the plane with variables “x” and “y” is imperfect but instructive: Since there are no base expressions in 
any algebraic expression, ai

B is simply ai , and the Cartesian product f(a1
B) x f(a2

B) becomes the pair 
<f(a1), f(a2)> ; the only relations rm are the binary relations of equality and inequality and their negations, 
so that m = 2; f(a1) and f(a2) are real numbers built up out of the real numbers f(“x”) and f(“y”) using the 
customary algebraic operations of plus, times, exponentiation, etc.; the positive relational profile POSf  

(r2(a1, a2)) of r2(a1, a2) under f becomes the  intersection of the set f(r2) with CP(r2(a1, a2)), which is 
simply the pair <f(“x”), f(“y”)> if the result of respectively replacing “x” and “y” by f(‘x”) and f(“y”) in  
r2(a1, a2) is a true sentence of elementary algebra, and is the empty pair otherwise; and the negative 
relational profile NEGf  (r

2(a1, a2)) of r2(a1, a2) under f becomes the  intersection of the set f(r2)c with 
CP(r2(a1, a2)), which is the pair <f(‘x”), f(“y”)> if the result of respectively replacing “x” and “y” by 
f(‘x”) and f(“y”) in  (r2)c (a1, a2) is a true sentence of elementary algebra, and is the empty pair otherwise.] 
 
 
7.2.   Chain Functions and Traces: 
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Let f be an interpretation, and let f(rm), f(a1), …, f(am), be denotations of rm , a1, …, am , respectively. We 
define a chain function through the sequence (f(a1), …, f(am)) as a function g which assigns, to every set 
f(a1), for 1< i < m-1, and for every element y belonging to U(f(a1)), that is, belonging to any of the 
member sets of f(a1), a set g(i,y) belonging to one of the sets in f(ai+1). We note that this definition is 
proper on any sequence (f(a1), …, f(am)) of denotations of thing-expressions a1, …, am relative to f. Let g 
be a chain function through the sequence (f(a1), …, f(am)). Then we define the trace of g through (f(a1), 
…, f(am)) as the set: {(z1 , …, zm)  c Dm // for some x1 c f(a1), z1 c x1, and z2 c g(1, z1), and z3 c g(2, z2) and 
… and zm c g(m-1, zm-1)}. There are in general many possible chain functions through the sequence (f(a1), 
…, f(am)) of thing expressions of rm(a1, …, am) relative to f, but there is exactly one chain function whose 
trace is identical with the positive relational profile of rm(a1, …, am) relative to f if rm(a1, …, am) is true 
under f, and there is no such chain function if rm(a1, …, am) fails to be true under f. . [Continuing with the 
analogy with elementary algebra of the plane: Since f(a1), f(a2) are real numbers and, as such, have no 
member sets, and so the above definition of chain function is not proper on any sequence (f(a1), f(a2)) of 
denotations of algebraic terms , so that the above definition of trace does not apply. On the other hand, 
we can define a trace as a degenerate notion whereby the trace of a sequence (f(a1), f(a2)) of denotations 
of algebraic terms is simply that sequence.] 
 
 
7.3  Denotations of Sentences and Their Graphical Representations 
 
We define the denotation f(rm(a1, …, am)) relative to the interpretation f, in symbols, Denf (r

m(a1, …, am), 
as the set:  
{{ <f(rm), v> // v c POSf  (r

m(a1, …, am))}} U { <f(rm)c, v> // v c NEGf (r
m(a1, …, am)) >}}, if there is a 

chain function g through the sequence (f(a1), …, f(am)) such that the trace of g through (f(a1), …, f(am)) is 
identical with POSf (r

m(a1, …, am))); and is {O}, otherwise. The set Denf (r
m(a1, …, am))) can be 

completely graphically represented as a network of nodes and connecting arcs, where the un-negated 
connecting arcs graphically represent the relation and each m-tuple of the nodes they connect 
graphically represents m elements of the domain which stand in that relation, and where negated 
connecting arcs graphically represent  the complement of the relation and each m-tuple of the nodes 
they connect graphically represent m elements of the domain which fail to stand in that relation.7,8 
[Continuing the analogy with elementary algebra of the plane, this definition reduces as follows: Denf 
(r2(a1, a2) is the set: {{ <f(r2), v> // v is a pair  <f(“x”), f(“y”)> such that, when the variables “x” and “y”, 
when respectively replaced by the values f(“x”), f(“y”) in   f(a1) and f(a2), f(a1) and f(a2) stand in the 
relation f(r2)} U {{ <f((r2)c), v> // v is a pair <f(“x”), f(“y”)> such that, when the variables “x” and “y” 
when respectively replaced by the values f(“x”), f(“y”) in   f(a1) and f(a2), f(a1) and f(a2) fail to stand in 
the relation f(r2)}. This set can be completely graphically represented on the plane in the usual way as an 
array of points corresponding to the pairs <f(a1), f(a2)> which  stand in the relation f(r2). But this 
graphic representation can be extended to allow for the simultaneous depiction of its graphical 
complement, namely the depiction of the set of pairs <f(a1), f(a2)> which  stand in the relation f(r2). If we 
were to take this course, which is formally possible, it would require a graphical way of distinguishing 
the complementary points from the standard ones by some graphical device such as using a different 
color.] 
 
8. Structure of Local Graphs. 
 
8.1. Nodes, Arcs, and Paths 
 
Local graphs are composed of two types of basic graphical elements: nodes and arcs.  Nodes represent 
elements of the underlying domain of discourse and arcs represent relations on those elements.  
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8.1.1. Simple and Compound Arcs 
 
Simple arcs are arcs that join at most two entities. There are three types of simple arcs: (i) arrows, which 
joins at most two nodes and which can be barred or unbarred; an unbarred arrow represents a relation 
whose relata are elements of the underlying domain of discourse, and considered in the order indicated by 
the direction of the arrow, and a barred arrow represents the complement of that relation; (ii) dotted lines, 
which  represent the identity relation when unbarred, and the non-identity relation when barred, and 
which join either two points to represent that they represent the same or different elements of the 
underlying domain of discourse, or two arrows to represent that they represent the same relation if both 
are barred or both are unbarred, or to represent complementary relations if one arrow is unbarred and the 
other is barred; and (iii) dashes, which represent the logical conjunction of the entities represented by the 
graphical entities it joins.  Compound Arcs are arcs formed by joining two or more simple arcs with a 
graphical unit called a “brace,” and represent many-place relations composed of those simple arcs. An arc 
that is not a constituent of a compound arc is said to be major.  
 
8.1.2. Dot Paths, Arrow Paths, and Mixed Paths 
 
A path is a simple or compound arc taken together with nodes it joins. If the constituent arcs of the path 
are all dotted lines, the path is called a dot path. If the constituent arcs of the path are all arrows, the path 
is called an arrow path, if the constituent arcs of the path are both dotted lines and arrows; the path is 
called a mixed path. An arc which is a constituent of a path is said to be a major constituent of that path if 
it is not itself a constituent of another constituent of that path. A path is said to be barred or unbarred 
according as its major constituent is barred or unbarred. A path represents that the elements of the domain 
of discourse respectively represented by the nodes of the path stand in the relation represented by the 
path. Arrow paths and mixed paths represent lexical relations, the place number of which corresponds to 
the number of nodes in the path. A single node placed at the origin or terminus of an arrow signifies 
respectively that the element represented by the node is in the domain or range of the relation represented 
by the arrow. 
 
8.1.3. Similarity and Identity Linked Paths   
 
Two paths are similarity linked if they differ only in the placement of bars on one or more of their 
constituent arcs, and all corresponding nodes and arcs joined by dotted lines. Two paths are identity 
linked if graphical depictions of the same denotation are joined by dotted lines. 
 
8.2. Local and Global Graphs  
 
8.2.1. Local Graphs  
 
A local graph is an array of similarity linked paths. For definiteness, that array is organized in such a way 
that the corresponding nodes are displayed in vertical columns. We refer to a column of corresponding 
nodes as a node bank, and to the nth such column in a local graph as the nth node bank of the local graph.  
 
8.2.2. Global Graphs as Similarity Linked Local Graphs 
Two local graphs are similarity linked if they differ only in one or more constituent paths which are 
similarity linked, and all corresponding nodes and arcs are joined by dotted lines, and a Global Graph is 
an array of local graphs which are pair wise similarity linked. 
 
Endnotes 
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1. By “central to realizing wider AGI goals,” I mean that without this sort of deductive capability, real 
time machine execution of other types of reasoning, such as those involved in inductive, probabilistic, or 
pre-suppositional inference, could probably not be achieved at the level envisioned in AGI. The reason is 
that deduction structures meaning interconnections within and among expressions which occur in these 
other types of reasoning as well as functions as a limiting special case for various of them (e.g., inductive 
and probabilistic inference).  As an example where deduction functions as a limiting case for probabilistic 
reasoning, we note that deductive inference can be generalized to a certain kind of probabilistic inference 
whereby the probability that a given sentence is true given that all sentences in a given text base are true 
can be near-instantaneously calculated as the “weighted proportion” of local graphs of the text base 
which are incompatible with all local graphs of the negation of the given sentence. This same mechanism 
can be used to show the degree of consistency of the entire text base. 
2. A sentence of a natural language is regarded here as a character string to which a specific syntactic and 
semantic structure, called a “reading,” has been assigned, and which varies generally with the context of 
utterance. A character string, relative to a given reading, has a unique graphical representation which 
captures those aspects of its meaning that determine its deductive interconnections with other character 
strings relative to a their readings. We do not address the very difficult problem of developing effective 
procedures for determining readings of given character strings for given contexts of utterance; however, 
we have developed, though not included in this paper, effective procedures for obtaining suitable 
graphical representations of given character strings relative to given readings. 
3.  A sentence has as many negations as it has readings. When we refer to the negation of a given 
sentence we are assuming a specific reading of that sentence, and its negation is that sentence whose 
main relation is interpreted as the set-theoretical complement of the main relation of the given sentence. 
4. Regarding the question of whether deduction is too complex or otherwise unsuitable to be treated as 
pattern matching, the point of this paper is that it can be so treated provided that the representations used 
are structured to enable it. 
5. While the empirical evidence for the proposed mechanism for human IDR is at this point primarily 
anecdotal, it is still reasonable to speculate regarding the sorts of deductive mechanisms which could be 
consistent at least with that evidence, and which could serve as starting point for future empirical studies. 
The virtue of the proposed mechanism is that it is fully explicit and applies to a wide range of sentences.  
6. While other sorts of inference mechanisms based on pattern matching have been proposed for 
inference forms other than deduction, such as abduction or analogy, these appear to be limited to a far 
narrower range of cases than those which we claim are addressed by the deductive mechanism proposed 
here.  
7. The reason for defining the denotation of a sentence as a singleton-singleton set is that we want to have 
sentences qualify also as thing-expressions, and the denotations of thing expressions are always sets of 
sets of elements of the universe of discourse.  
8. There are, in general,  many possible chain functions on the sequence (f(a1), …, f(am)) of thing 
expressions of rm(a1, …, am) relative to f, but there is exactly one chain function whose trace is identical 
with the positive relational profile of rm(a1, …, am) relative to f if rm(a1, …, am) is true under f, and there is 
no such chain function if rm(a1, …, am) fails to be true under f. 
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